``````{
GUY MCLOUGHLIN

>the way, it took about 20 mins. on my 386/40 to get prime numbers
>through 20000. I tried to come up With code to do the same With
>Turbo but it continues to elude me. Could anybody explain
>how to Write such a routine in Pascal?

...The following PRIME routine should prove to be a bit faster:
}

{ Find the square-root of a LongInt. }
Function FindSqrt(lo_IN : LongInt) : LongInt;

{ SUB : Find square-root For numbers less than 65536. }
Function FS1(wo_IN : Word) : Word;
Var
wo_Temp1,
wo_Temp2 : Word;
lo_Error : Integer;
begin
if (wo_IN > 0) then
begin
wo_Temp1 := 1;
wo_Temp2 := wo_IN;
While ((wo_Temp1 shl 1) < wo_Temp2) do
begin
wo_Temp1 := wo_Temp1 shl 1;
wo_Temp2 := wo_Temp2 shr 1;
end;
Repeat
wo_Temp1 := (wo_Temp1 + wo_Temp2) div 2;
wo_Temp2 := wo_IN div wo_Temp1;
lo_Error := (LongInt(wo_Temp1) - wo_Temp2);
Until (lo_Error <= 0);
FS1 := wo_Temp1;
end
else
FS1 := 0;
end;

{ SUB : Find square-root For numbers greater than 65535. }
Function FS2(lo_IN : longInt) : longInt;
Var
lo_Temp1,
lo_Temp2,
lo_Error : longInt;
begin
if (lo_IN > 0) then
begin
lo_Temp1 := 1;
lo_Temp2 := lo_IN;
While ((lo_Temp1 shl 1) < lo_Temp2) do
begin
lo_Temp1 := lo_Temp1 shl 1;
lo_Temp2 := lo_Temp2 shr 1;
end;

Repeat
lo_Temp1 := (lo_Temp1 + lo_Temp2) div 2;
lo_Temp2 := lo_IN div lo_Temp1;
lo_Error := (lo_Temp1 - lo_Temp2);
Until (lo_Error <= 0);
FS2 := lo_Temp1;
end
else
FS2 := 0;
end;

begin
if (lo_IN < 65536) then
FindSqrt := FS1(lo_IN)
else
FindSqrt := FS2(lo_IN);
end;

{ Check if a number is prime. }
Function Prime(lo_IN : LongInt) : Boolean;
Var
lo_Sqrt,
lo_Loop : LongInt;
begin
if not odd(lo_IN) then
begin
Prime := (lo_IN = 2);
Exit;
end;
if (lo_IN mod 3 = 0) then
begin
Prime := (lo_IN = 3);
Exit;
end;
if (lo_IN mod 5 = 0) then
begin
Prime := (lo_IN = 5);
Exit;
end;

lo_Sqrt := FindSqrt(lo_IN);
lo_Loop := 7;
While (lo_Loop < lo_Sqrt) do
begin
inc(lo_Loop, 2);
if (lo_IN mod lo_Loop = 0) then
begin
Prime := False;
Exit;
end;
end;
Prime := True;
end;

``````